Copied to
clipboard

G = C5×C4.9C42order 320 = 26·5

Direct product of C5 and C4.9C42

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C4.9C42, C421C20, C20.62C42, (C2×C8)⋊1C20, (C2×C40)⋊13C4, (C4×C20)⋊14C4, C4.9(C4×C20), C20.81(C4⋊C4), (C2×C20).36Q8, C23.8(C5×D4), (C2×C20).277D4, (C22×C10).27D4, C42⋊C2.1C10, (C2×M4(2)).4C10, C20.148(C22⋊C4), (C10×M4(2)).16C2, (C22×C20).386C22, C10.40(C2.C42), C4.1(C5×C4⋊C4), (C2×C4).8(C5×D4), (C2×C4).1(C5×Q8), C22.1(C5×C4⋊C4), (C2×C4).63(C2×C20), C4.17(C5×C22⋊C4), (C2×C10).46(C4⋊C4), (C2×C20).497(C2×C4), C22.7(C5×C22⋊C4), (C22×C4).16(C2×C10), C2.2(C5×C2.C42), (C5×C42⋊C2).15C2, (C2×C10).134(C22⋊C4), SmallGroup(320,142)

Series: Derived Chief Lower central Upper central

C1C4 — C5×C4.9C42
C1C2C22C23C22×C4C22×C20C5×C42⋊C2 — C5×C4.9C42
C1C4 — C5×C4.9C42
C1C20 — C5×C4.9C42

Generators and relations for C5×C4.9C42
 G = < a,b,c,d | a5=b4=c4=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, bd=db >

Subgroups: 154 in 94 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C20, C20, C20, C2×C10, C2×C10, C2×C10, C42⋊C2, C2×M4(2), C40, C2×C20, C2×C20, C2×C20, C22×C10, C4.9C42, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C5×M4(2), C22×C20, C5×C42⋊C2, C10×M4(2), C5×C4.9C42
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, Q8, C10, C42, C22⋊C4, C4⋊C4, C20, C2×C10, C2.C42, C2×C20, C5×D4, C5×Q8, C4.9C42, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C5×C2.C42, C5×C4.9C42

Smallest permutation representation of C5×C4.9C42
On 80 points
Generators in S80
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 54 12 42)(2 55 13 43)(3 51 14 44)(4 52 15 45)(5 53 11 41)(6 19 64 60)(7 20 65 56)(8 16 61 57)(9 17 62 58)(10 18 63 59)(21 34 79 75)(22 35 80 71)(23 31 76 72)(24 32 77 73)(25 33 78 74)(26 69 50 40)(27 70 46 36)(28 66 47 37)(29 67 48 38)(30 68 49 39)
(1 24 66 7)(2 25 67 8)(3 21 68 9)(4 22 69 10)(5 23 70 6)(11 76 36 64)(12 77 37 65)(13 78 38 61)(14 79 39 62)(15 80 40 63)(16 55 33 48)(17 51 34 49)(18 52 35 50)(19 53 31 46)(20 54 32 47)(26 59 45 71)(27 60 41 72)(28 56 42 73)(29 57 43 74)(30 58 44 75)
(6 19 64 60)(7 20 65 56)(8 16 61 57)(9 17 62 58)(10 18 63 59)(21 75 79 34)(22 71 80 35)(23 72 76 31)(24 73 77 32)(25 74 78 33)(26 50)(27 46)(28 47)(29 48)(30 49)(36 70)(37 66)(38 67)(39 68)(40 69)

G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,54,12,42)(2,55,13,43)(3,51,14,44)(4,52,15,45)(5,53,11,41)(6,19,64,60)(7,20,65,56)(8,16,61,57)(9,17,62,58)(10,18,63,59)(21,34,79,75)(22,35,80,71)(23,31,76,72)(24,32,77,73)(25,33,78,74)(26,69,50,40)(27,70,46,36)(28,66,47,37)(29,67,48,38)(30,68,49,39), (1,24,66,7)(2,25,67,8)(3,21,68,9)(4,22,69,10)(5,23,70,6)(11,76,36,64)(12,77,37,65)(13,78,38,61)(14,79,39,62)(15,80,40,63)(16,55,33,48)(17,51,34,49)(18,52,35,50)(19,53,31,46)(20,54,32,47)(26,59,45,71)(27,60,41,72)(28,56,42,73)(29,57,43,74)(30,58,44,75), (6,19,64,60)(7,20,65,56)(8,16,61,57)(9,17,62,58)(10,18,63,59)(21,75,79,34)(22,71,80,35)(23,72,76,31)(24,73,77,32)(25,74,78,33)(26,50)(27,46)(28,47)(29,48)(30,49)(36,70)(37,66)(38,67)(39,68)(40,69)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,54,12,42)(2,55,13,43)(3,51,14,44)(4,52,15,45)(5,53,11,41)(6,19,64,60)(7,20,65,56)(8,16,61,57)(9,17,62,58)(10,18,63,59)(21,34,79,75)(22,35,80,71)(23,31,76,72)(24,32,77,73)(25,33,78,74)(26,69,50,40)(27,70,46,36)(28,66,47,37)(29,67,48,38)(30,68,49,39), (1,24,66,7)(2,25,67,8)(3,21,68,9)(4,22,69,10)(5,23,70,6)(11,76,36,64)(12,77,37,65)(13,78,38,61)(14,79,39,62)(15,80,40,63)(16,55,33,48)(17,51,34,49)(18,52,35,50)(19,53,31,46)(20,54,32,47)(26,59,45,71)(27,60,41,72)(28,56,42,73)(29,57,43,74)(30,58,44,75), (6,19,64,60)(7,20,65,56)(8,16,61,57)(9,17,62,58)(10,18,63,59)(21,75,79,34)(22,71,80,35)(23,72,76,31)(24,73,77,32)(25,74,78,33)(26,50)(27,46)(28,47)(29,48)(30,49)(36,70)(37,66)(38,67)(39,68)(40,69) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,54,12,42),(2,55,13,43),(3,51,14,44),(4,52,15,45),(5,53,11,41),(6,19,64,60),(7,20,65,56),(8,16,61,57),(9,17,62,58),(10,18,63,59),(21,34,79,75),(22,35,80,71),(23,31,76,72),(24,32,77,73),(25,33,78,74),(26,69,50,40),(27,70,46,36),(28,66,47,37),(29,67,48,38),(30,68,49,39)], [(1,24,66,7),(2,25,67,8),(3,21,68,9),(4,22,69,10),(5,23,70,6),(11,76,36,64),(12,77,37,65),(13,78,38,61),(14,79,39,62),(15,80,40,63),(16,55,33,48),(17,51,34,49),(18,52,35,50),(19,53,31,46),(20,54,32,47),(26,59,45,71),(27,60,41,72),(28,56,42,73),(29,57,43,74),(30,58,44,75)], [(6,19,64,60),(7,20,65,56),(8,16,61,57),(9,17,62,58),(10,18,63,59),(21,75,79,34),(22,71,80,35),(23,72,76,31),(24,73,77,32),(25,74,78,33),(26,50),(27,46),(28,47),(29,48),(30,49),(36,70),(37,66),(38,67),(39,68),(40,69)]])

110 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F···4M5A5B5C5D8A8B8C8D10A10B10C10D10E···10P20A···20H20I···20T20U···20AZ40A···40P
order12222444444···4555588881010101010···1020···2020···2020···2040···40
size11222112224···41111444411112···21···12···24···44···4

110 irreducible representations

dim111111111122222244
type++++-+
imageC1C2C2C4C4C5C10C10C20C20D4Q8D4C5×D4C5×Q8C5×D4C4.9C42C5×C4.9C42
kernelC5×C4.9C42C5×C42⋊C2C10×M4(2)C4×C20C2×C40C4.9C42C42⋊C2C2×M4(2)C42C2×C8C2×C20C2×C20C22×C10C2×C4C2×C4C23C5C1
# reps12184484321621184428

Matrix representation of C5×C4.9C42 in GL4(𝔽41) generated by

18000
01800
00180
00018
,
32000
03200
00320
00032
,
0010
0001
0100
1000
,
1000
04000
00320
0009
G:=sub<GL(4,GF(41))| [18,0,0,0,0,18,0,0,0,0,18,0,0,0,0,18],[32,0,0,0,0,32,0,0,0,0,32,0,0,0,0,32],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0],[1,0,0,0,0,40,0,0,0,0,32,0,0,0,0,9] >;

C5×C4.9C42 in GAP, Magma, Sage, TeX

C_5\times C_4._9C_4^2
% in TeX

G:=Group("C5xC4.9C4^2");
// GroupNames label

G:=SmallGroup(320,142);
// by ID

G=gap.SmallGroup(320,142);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,568,248,3511,10085]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,b*d=d*b>;
// generators/relations

׿
×
𝔽